Actin filament bundles are required for microtubule reorientation during growth cone turning to avoid an inhibitory guidance cue.
نویسندگان
چکیده
The extracellular matrix through which growth cones navigate contains molecules, such as chondroitin sulfate proteoglycan, that can inhibit growth cone advance and induce branching and turning. Growth cone turning is accompanied by rearrangement of the cytoskeleton. To identify changes in the organization of actin filaments and microtubules that occur as growth cones turn, we used time-lapse phase contrast videomicroscopy to observe embryonic chick dorsal root ganglion neuronal growth cones at a substratum border between fibronectin and chondroitin sulfate proteoglycan, in the presence and absence of cytochalasin B. Growth cones were fixed and immunocytochemically labeled to identify actin filaments and dynamic and stable microtubules. Our results suggest that microtubules are rearranged within growth cones to accomplish turning to avoid chondroitin sulfate proteoglycan. Compared to growth cones migrating on fibronectin, turning growth cones were more narrow, and they contained dynamic microtubules that were closer to the leading edge and were more bundled. Cytochalasin B-treated growth cones sidestepped laterally along the border instead of turning, and in sidestepping growth cones, microtubules were not bundled and aligned. We conclude that actin filament bundles are required for microtubule reorientation and growth cone turning to avoid chondroitin sulfate proteoglycan.
منابع مشابه
Dynamic microtubule ends are required for growth cone turning to avoid an inhibitory guidance cue.
Growth cone turning is an important mechanism for changing the direction of neurite elongation during development of the nervous system. Our previous study indicated that actin filament bundles at the leading margin direct the distal microtubular cytoskeleton as growth cones turn to avoid substratum-bound chondroitin sulfate proteoglycan. Here, we investigated the role of microtubule dynamics i...
متن کاملFocal loss of actin bundles causes microtubule redistribution and growth cone turning
It is commonly believed that growth cone turning during pathfinding is initiated by reorganization of actin filaments in response to guidance cues, which then affects microtubule structure to complete the turning process. However, a major unanswered question is how changes in actin cytoskeleton are induced by guidance cues and how these changes are then translated into microtubule rearrangement...
متن کاملCytoskeletal dynamics in growth-cone steering.
Interactions between dynamic microtubules and actin filaments are essential to a wide range of cell biological processes including cell division, motility and morphogenesis. In neuronal growth cones, interactions between microtubules and actin filaments in filopodia are necessary for growth cones to make a turn. Growth-cone turning is a fundamental behaviour during axon guidance, as correct nav...
متن کاملMicrotubule Dynamics Are Necessary for Src Family Kinase-Dependent Growth Cone Steering
Dynamic microtubules explore the peripheral (P) growth cone domain using F actin bundles as polymerization guides. Microtubule dynamics are necessary for growth cone guidance; however, mechanisms of microtubule reorganization during growth cone turning are not well understood. Here, we address these issues by analyzing growth cone steering events in vitro, evoked by beads derivatized with the I...
متن کاملTouch and go: guidance cues signal to the growth cone cytoskeleton.
Growth cones, the highly motile tips of growing axons, guide axons to their targets by responding to molecular cues. Growth cone behaviors such as advancing, retracting, turning and branching are driven by the dynamics and reorganization of the actin and microtubule cytoskeleton through signaling pathways linked to guidance cue receptors. Actin filaments play a major part in growth cone motilit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 109 ( Pt 8) شماره
صفحات -
تاریخ انتشار 1996